Creating transformative gene-based medicines for serious diseases

Corporate Overview | June 2019
Forward-Looking Statements

The presentation and other related materials may contain a number of “forward-looking statements” within the meaning of the Private Securities Litigation Reform Act of 1995, as amended, including statements regarding CRISPR Therapeutics’ expectations about any or all of the following: (i) clinical trials (including, without limitation, the timing of filing of clinical trial applications and INDs, any approvals thereof and the timing of commencement of clinical trials), development timelines and discussions with regulatory authorities related to product candidates under development by CRISPR Therapeutics and its collaborators; (ii) the number of patients that will be evaluated, the anticipated date by which enrollment will be completed and the data that will be generated by ongoing and planned clinical trials, and the ability to use that data for the design and initiation of further clinical trials; (iii) the scope and timing of ongoing and potential future clinical trials; (iv) the intellectual property coverage and positions of CRISPR Therapeutics, its licensors and third parties; (v) the sufficiency of CRISPR Therapeutics’ cash resources; and (vi) the therapeutic value, development, and commercial potential of CRISPR/Cas9 gene editing technologies and therapies. Without limiting the foregoing, the words “believes,” “anticipates,” “plans,” “expects” and similar expressions are intended to identify forward-looking statements. You are cautioned that forward-looking statements are inherently uncertain. Although CRISPR Therapeutics believes that such statements are based on reasonable assumptions within the bounds of its knowledge of its business and operations, forward-looking statements are neither promises nor guarantees and they are necessarily subject to a high degree of uncertainty and risk. Actual performance and results may differ materially from those projected or suggested in the forward-looking statements due to various risks and uncertainties. These risks and uncertainties include, among others: the outcomes for each CRISPR Therapeutics’ planned clinical trials and studies may not be favorable; that one or more of CRISPR Therapeutics’ internal or external product candidate programs will not proceed as planned for technical, scientific or commercial reasons; that future competitive or other market factors may adversely affect the commercial potential for CRISPR Therapeutics’ product candidates; uncertainties inherent in the initiation and completion of preclinical studies for CRISPR Therapeutics’ product candidates; availability and timing of results from preclinical studies; whether results from a preclinical trial will be predictive of future results of the future trials; uncertainties about regulatory approvals to conduct trials or to market products; uncertainties regarding the intellectual property protection for CRISPR Therapeutics’ technology and intellectual property belonging to third parties; and those risks and uncertainties described under the heading “Risk Factors” in CRISPR Therapeutics’ most recent annual report on Form 10-K, and in any other subsequent filings made by CRISPR Therapeutics with the U.S. Securities and Exchange Commission, which are available on the SEC’s website at www.sec.gov. Existing and prospective investors are cautioned not to place undue reliance on these forward-looking statements, which speak only as of the date they are made. CRISPR Therapeutics disclaims any obligation or undertaking to update or revise any forward-looking statements contained in this presentation, other than to the extent required by law.
CRISPR Therapeutics Highlights

Leading gene editing company focused on translating revolutionary CRISPR/Cas9 technology into transformative therapies

Pioneering CRISPR in the clinic with CTX001™ in β-thalassemia and sickle cell disease

Next-generation immuno-oncology platform underlying wholly-owned, potentially best-in-class gene-edited allogeneic cell therapies

Enabling regenerative medicine 2.0 with CRISPR/Cas9-edited allogeneic stem cells

Advancing in vivo applications based on in-licensed technologies, platform improvement and strategic partnerships
The CRISPR/Cas9 Revolution

A **SPECIFIC, EFFICIENT** and **VERSATILE** tool for editing genes

Disrupt | Delete | Correct or Insert

“If scientists can dream of a genetic manipulation, **CRISPR can now make it happen**”
Our Therapeutic Programs

GENETICALLY-DEFINED DISEASES

- **Hemoglobinopathies**
 Lead candidate based on *ex vivo* gene-edited hematopoietic stem cells

- **In vivo**
 Pursuing *in vivo* applications via viral and non-viral approaches

CELLULAR ENGINEERING

- **Immuno-oncology**
 Next-generation gene-edited allogeneic CAR-T pipeline

- **Regenerative medicine**
 Next-generation CRISPR-enabled allogeneic stem cell-based therapies
Our Pipeline

<table>
<thead>
<tr>
<th>PROGRAM</th>
<th>RESEARCH</th>
<th>IND-ENABLING</th>
<th>CLINICAL</th>
<th>MARKETED</th>
<th>STATUS</th>
<th>PARTNER</th>
<th>STRUCTURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemoglobinopathies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTX001™: β-thalassemia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Enrolling</td>
<td></td>
<td>Collaboration</td>
</tr>
<tr>
<td>CTX001™: Sickle cell disease (SCD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Enrolling</td>
<td></td>
<td>Collaboration</td>
</tr>
<tr>
<td>Immuno-oncology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTX110™: Anti-CD19 allogeneic CAR-T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Initiate trial in 1H 2019</td>
<td></td>
<td>Wholly-owned</td>
</tr>
<tr>
<td>CTX120™: Anti-BCMA allogeneic CAR-T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Wholly-owned</td>
</tr>
<tr>
<td>CTX130™: Anti-CD70 allogeneic CAR-T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Wholly-owned</td>
</tr>
<tr>
<td>Regenerative medicine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type I diabetes mellitus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Collaboration</td>
</tr>
<tr>
<td>In vivo approaches</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glycogen storage disease Ia (GSD Ia)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Wholly-owned</td>
</tr>
<tr>
<td>Duchenne muscular dystrophy (DMD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exclusive license</td>
</tr>
<tr>
<td>Myotonic dystrophy type 1 (DM1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Collaboration</td>
</tr>
<tr>
<td>Cystic fibrosis (CF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>License option</td>
</tr>
</tbody>
</table>

Through Casebia, our joint venture with Bayer, we have 50% ownership of additional programs in SCID, hemophilia A and IPEX.
Hemoglobinopathies – Devastating Blood Diseases

Sickle Cell Disease (SCD) and β-Thalassemia

Blood disorders caused by mutations in the β-globin gene

- Sickled
- Normal Cell
- Thalassemic

Significant worldwide burden

ANNUAL BIRTHS

- 300K SCD
- 60K β-thalassemia

High morbidity and mortality

- Anemia
- Pain
- Early death

Heavy burden of patient care

- Frequent transfusions and hospitalizations
Our Approach – Upregulating Fetal Hemoglobin

- Naturally occurring genetic variants cause a condition known as hereditary persistence of fetal hemoglobin (HPFH), which leads to reduced or no symptoms in patients with SCD and β-thalassemia.

- Our gene editing strategy aims to mimic these variants in symptomatic patients, an approach supported by well-understood genetics.

Symptoms in SCD and β-Thalassemia Decrease as HbF Level Increases

CTX001 shows 80% allelic editing, >90% of cells modified, >30% HbF and no reduction in engraftment of edited cells in mice in vivo
CTX001 Aims to Treat Underlying SCD Pathophysiology

Enough HbF to Prevent Polymerization
- Normal: No polymerization
- SCD Patient: Polymerization
- CTX001: No polymerization

Estimated HbF Expression at the Cellular Level

<table>
<thead>
<tr>
<th></th>
<th>Bi-Allelic</th>
<th>Mono-Allelic</th>
<th>Unedited</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculated HbF/(HbF+HbA) (%)</td>
<td>40</td>
<td>20</td>
<td>10</td>
</tr>
</tbody>
</table>

Enough Normal Cells in Circulation to Prevent Occlusion
- Normal: No occlusion
- SCD Patient: Occlusion

1. n=163 single erythroid colonies derived from edited CD34+ cells from healthy donors
CTX001 Increases HbF in β-Thalassemia Patient Samples

Editing Results in Increased Globin mRNA Ratio, which Correlates with Increased RBC Lifespan

- Editing boosts ratio above carrier level (generally asymptomatic)
- Calculated mean red blood cell lifespan (days): 3
- 2. Technical replicates
Pioneering CRISPR Clinical Trials

Single-arm Phase 1/2 trials to assess the safety and efficacy of CTX001 in patients with β-thalassemia and SCD

Patients
Up to 45 adult patients each for transfusion-dependent β-thalassemia and severe SCD

Sites
Sites with extensive transplant experience in countries with significant disease burden

Endpoints
HbF as a clear biomarker, and clinical correlates: transfusion burden for β-thal and VOCs for SCD

Potential to expand into registrational trials, as well as into additional age cohorts and β-thalassemia genotypes, if supported by safety and efficacy
CRISPR Enables the Next Generation of I/O Cell Therapy

ALLOGENEIC CAR-T
- Off-the-shelf
- More potent starting material
- More consistent product
- Broader access
- Flexible dosing (e.g., re-dosing)

SOLID TUMOR EFFICACY
- Avoid exhaustion
- Modulate suppressive TMEs
- Target tumors with greater selectivity
- Sense and respond via genetic circuits
- Recruit endogenous immunity
Allogeneic CAR-T Therapy Has Transformative Potential

Before Patient Diagnosis

PATIENT

- Autologous: patient derived

HEALTHY DONOR

- Allogeneic: healthy-donor derived
- T Cells
- Manufacture
- 100+ Doses

After Patient Diagnosis

WEEK 1
- Apheresis

WEEK 2
- Manufacture

WEEK 3
- Single Treatment

TREATMENT

Allogeneic CAR-T allows for immediate treatment without risk of manufacturing failure, saving patients valuable time in which their disease could progress.
CRISPR-Edited Allogeneic T Cell Design

Initial Allogeneic CAR-T Candidate – CTX110

- Improve persistence in the allo setting with β2M knock-out to eliminate MHC I expression
- Prevent GvHD via TCR disruption
- Improve safety and potency by precise insertion of CAR construct into TRAC locus

Multiplex editing in one step
CRISPR Editing Allows for a More Consistent Product

Precise and Efficient Editing to Produce CTX110

- Consistently high editing across 5 different donors
- >50% of cells have all three desired edits

Greater Consistency than Viral Approaches

- 54-66% CAR⁺ range with CRISPR vs. 6-45% for lentiviral CAR-T

1. Maude, et al. NEJM 2014

© 2019 CRISPR Therapeutics
CTX110 – Anti-CD19 Lead Program Advancing to the Clinic

Prolonged Survival in Disseminated Nalm6 B-ALL Xenograft Tumor Model

- No treatment: n=6 mice
- CTX110: 4x10^6 CAR-T cells/mouse, n=6 mice

\[p=0.0004^{1} \]

(Log-rank test, Mantel-Cox test)

CTX110

- Anti-CD19 allogeneic CAR-T
- TCR and β2M knock-outs
- For CD19-positive malignancies, such as lymphomas and leukemias

Lead immuno-oncology program

- Novel approach against a validated tumor target
- On track to initiate clinical trial in 1H 2019
Subcutaneous RPMI-8226 Multiple Myeloma Model Completely Eliminated

- **No treatment**
 - n=5 mice

- **CTX120**
 - 2.5x10^6 cells/mouse
 - n=5 mice

CTX120
- Anti-BCMA allogeneic CAR-T
- TCR and β2M knock-outs
- For multiple myeloma

Strong rationale in multiple myeloma
- Validated tumor target
- Potential for better outcomes than autologous CAR-T given poor health of patient T cells following many prior lines of therapy
CTX130 – Anti-CD70 Program as a Bridge to Solid Tumors

Subcutaneous A498 Renal Cell Carcinoma Model Completely Eliminated

- No treatment
 - n=5 mice

- CTX130
 - 1x10^7 cells/mouse
 - n=5 mice

CTX130
- Anti-CD70 allogeneic CAR-T
- Additional editing beyond TCR and β2M knock-outs
- For both heme and solid tumors

Strong rationale for targeting CD70 for solid tumors
- Initial focus on clear cell renal cell carcinoma – immune-infiltrated disease and >80% CD70-positive
- Minimal CD70 expression on healthy tissues¹
Rapid Generation of Novel Candidates Using CRISPR

Multiplex Editing
Single-shot sextuple knock-out plus CAR insertion performed at high efficiency

Speed of Discovery
- **6 WEEKS**
 Concept to CAR-T cell
- **6 MONTHS**
 Concept to *in vivo* preclinical POC

Septuple-edited CAR-T cells show **no viability decrease, no cytokine-independent growth and robust target-specific cytotoxicity**
CRISPR Enables Regenerative Medicine 2.0

CRISPR/Cas9 Technology Opens Broader Applications for Regenerative Medicine

CRISPR/Cas9
- Allow immune evasion
- Improve cell function
- Direct cell fate

Stem Cell Technology

Therapeutic Targets
- e.g., diabetes

Exemplified by our collaboration with ViaCyte
- Aim to develop beta-cell replacement product to treat diabetes that does not require immunosuppression
- Applies immune-evasive gene-editing expertise from our allo CAR-T programs to stem cells
Delivering CRISPR/Cas9 to Unlock *In Vivo* Applications

Non-Viral

Lipid Nanoparticles (LNPs)
- Increased potency
- Expansion beyond liver delivery
- Improved tolerability

Messenger RNA (mRNA)
- Controlled duration of expression
- Tissue specificity
- Increased potency

Viral

Adeno-Associated Virus (AAV)
- Improved tissue specificity
- Reduced immunogenicity
- Self-inactivation

- **Broadens our pipeline** – 50%-owned by CRISPR Therapeutics and funded by $265 MM from Bayer
- **Enhances our platform improvement efforts** – joint research and full access to new IP at no cost
Optimizing the CRISPR/Cas9 Platform

- **Nuclease Engineering**: Enhance CRISPR/Cas9 system through protein engineering
- **Guide RNA Optimization**: Identify optimal guide RNA formats and sequences for therapeutic editing
- **Advanced Editing**: Improve efficiency of gene correction and multiplexing
- **Synthetic Biology**: Engineer improved cellular therapeutics
Strong U.S. and Global Foundational IP Position

United States

Charpentier / UC Berkeley / U. Vienna granted patents of broad scope; multiple applications progressing

- 5 patents of broad scope granted: U.S. Patent Nos. 10,000,772; 10,113,167; 10,266,850 (involved in first interference); 10,227,611; and 10,301,651
- 5 patent applications of broad scope allowed
- Over 40 additional patent applications moving forward in parallel with both broad and narrow claims
- Federal Appeals Court affirmed PTAB decision to end the first interference on technical grounds, without any determination on inventorship of CRISPR/Cas9 gene editing in eukaryotic cells

Europe and Global

Charpentier / UC Berkeley / U. Vienna granted foundational patents, including use in eukaryotes

- 6 patents granted between EU and U.K. include single-guide RNA and uses in all settings
- Patents of broad scope granted in Japan, China, Singapore, Hong Kong, Ukraine, Israel, Australia, New Zealand, Mexico, South Africa and elsewhere
- Advancing applications globally in approximately 80 jurisdictions worldwide with both broad and narrow claims
Building a Great Company

EXPERIENCED
Management Team

END-TO-END
CAPABILITIES
With >190 Employees

COLLABORATIVE &
ENTREPRENEURIAL
Culture