Creating transformative gene-based medicines for serious diseases
Forward-Looking Statements

The presentation and other related materials may contain a number of “forward-looking statements” within the meaning of the Private Securities Litigation Reform Act of 1995, as amended, including statements regarding CRISPR Therapeutics’ expectations about any or all of the following: (i) the safety, efficacy and clinical progress of our various clinical programs; (ii) the status of clinical trials (including, without limitation, the expected timing of data releases, filing of clinical trial applications and INDs, any approvals thereof and the timing of commencement of clinical trials), development timelines and discussions with regulatory authorities related to product candidates under development by CRISPR Therapeutics and its collaborators; (iii) expectations regarding the data that is being presented; (iv) the number of patients that will be evaluated, the anticipated date by which enrollment will be completed and the data that will be generated by ongoing and planned clinical trials, and the ability to use that data for the design and initiation of further clinical trials; (v) the activities under CRISPR Therapeutics’ collaborations and the expected benefits thereof; (vi) the intellectual property coverage and positions of CRISPR Therapeutics, its licensors and third parties as well as the status and potential outcome of proceedings involving any such intellectual property; (vii) the sufficiency of CRISPR Therapeutics’ cash resources; and (viii) the therapeutic value, development, and commercial potential of CRISPR/Cas9 gene editing technologies and therapies. Without limiting the foregoing, the words “believes,” “anticipates,” “plans,” “expects” and similar expressions are intended to identify forward-looking statements. You are cautioned that forward-looking statements are inherently uncertain. Although CRISPR Therapeutics believes that such statements are based on reasonable assumptions within the bounds of its knowledge of its business and operations, forward-looking statements are neither promises nor guarantees and they are necessarily subject to a high degree of uncertainty and risk. Actual performance and results may differ materially from those projected or suggested in the forward-looking statements due to various risks and uncertainties. These risks and uncertainties include, among others: the potential for initial and preliminary data from any clinical trial and initial data from a limited number of patients not to be indicative of final trial results; the potential that the outcomes for each of CRISPR Therapeutics’ planned clinical trials and studies may not be favorable; that one or more of CRISPR Therapeutics’ internal or external product candidate programs will not proceed as planned for technical, scientific or commercial reasons; that future competitive or other market factors may adversely affect the commercial potential for CRISPR Therapeutics’ product candidates; uncertainties inherent in the initiation and completion of preclinical studies for CRISPR Therapeutics’ product candidates; availability and timing of results from preclinical studies; whether results from a preclinical trial will be predictive of future results of the future trials; uncertainties about regulatory approvals to conduct trials or to market products; CRISPR Therapeutics may not realize the potential benefits of its collaborations; potential impacts due to the coronavirus pandemic; uncertainties regarding the intellectual property protection for CRISPR Therapeutics’ technology and intellectual property belonging to third parties, and the outcome of proceedings (such as an interference, an opposition or a similar proceeding) involving all or any portion of such intellectual property; and those risks and uncertainties described under the heading “Risk Factors” in CRISPR Therapeutics’ most recent annual report on Form 10-K, quarterly report on Form 10-Q, and in any other subsequent filings made by CRISPR Therapeutics with the U.S. Securities and Exchange Commission, which are available on the SEC’s website at www.sec.gov. Existing and prospective investors are cautioned not to place undue reliance on these forward-looking statements, which speak only as of the date they are made. CRISPR Therapeutics disclaims any obligation or undertaking to update or revise any forward-looking statements contained in this presentation, other than to the extent required by law.

CRISPR THERAPEUTICS® standard character mark and design logo, CTX001™, CTX110™, CTX120™, and CTX130™ are trademarks and registered trademarks of CRISPR Therapeutics AG. All other trademarks and registered trademarks are the property of their respective owners.
CRISPR Therapeutics Highlights

Leading gene editing company focused on translating revolutionary CRISPR/Cas9 technology into transformative therapies

- **Achieving functional cures** with CTX001™ in β-thalassemia and sickle cell disease
- **Next-generation immuno-oncology platform** underlying wholly-owned, potentially best-in-class gene-edited allogeneic cell therapies CTX110™, CTX120™ and CTX130™
- **Enabling regenerative medicine 2.0** with CRISPR/Cas9-edited allogeneic stem cells
- **Advancing in vivo applications** based on in-licensed technologies, platform improvement and strategic partnerships
The CRISPR/Cas9 Revolution

A **SPECIFIC**, **EFFICIENT** and **VERSATILE** tool for editing genes

- **Disrupt**
- **Delete**
- **Correct or Insert**

“If scientists can dream of a genetic manipulation, **CRISPR can now make it happen**”
Our Pipeline

Hemoglobinopathies
- **CTX001™**: β-thalassemia (Enrolling)
- **CTX001™**: Sickle cell disease (SCD) (Enrolling)

Immuno-oncology
- **CTX110™**: Anti-CD19 allogeneic CAR-T (Enrolling)
- **CTX120™**: Anti-BCMA allogeneic CAR-T (Enrolling)
- **CTX130™**: Anti-CD70 allogeneic CAR-T (Enrolling)

Regenerative medicine
- **Type I diabetes mellitus**: Enrolling (Collaboration)

In vivo approaches
- **Glycogen storage disease Ia (GSD Ia)**: Wholly-owned
- **Duchenne muscular dystrophy (DMD)**: License (Collaboration)
- **Myotonic dystrophy type 1 (DM1)**: License
- **Cystic fibrosis (CF)**: License

Additional undisclosed, early-stage programs subject to collaboration or license agreements with Vertex and Bayer.
Recent Collaborations to Combine Leading Capabilities

Focus on co-developing and co-commercializing three gene-edited, donor-derived NK therapies:

- CAR-NK program targeting CD70
- Combined NK and T cell program (NK+T) to harness the synergies of the innate and adaptive immune systems
- CAR-NK program optioned from Nkarta’s gene-edited pipeline

Focus on advancing gene-edited therapies for familial amyotrophic lateral sclerosis (ALS) and Friedreich’s ataxia:

- CRISPR leads Friedreich’s ataxia program, and performs gene-editing activities for both programs
- Capsida leads ALS program, and conducts capsid engineering and manufacturing for both programs
- CRISPR and Capsida each have the option to co-develop and co-commercialize the program that the other leads
Hemoglobinopathies – Devastating Blood Diseases

Sickle Cell Disease (SCD) and β-Thalassemia

Blood disorders caused by mutations in the β-globin gene

Significant worldwide burden

ANNUAL BIRTHS

300K
SCD

60K
β-thalassemia

High morbidity and mortality

Heavy burden of patient care

Anemia

Pain

Early death

Frequent transfusions and hospitalizations
Our Approach — Upregulating Fetal Hemoglobin

Symptoms in SCD and β-Thalassemia Decrease as HbF Level Increases

- Naturally occurring genetic variants cause a condition known as hereditary persistence of fetal hemoglobin (HPFH), which leads to reduced or no symptoms in patients with SCD and β-thalassemia.
- Our gene editing strategy aims to mimic these variants in symptomatic patients, an approach supported by well-understood genetics.
Pioneering CRISPR Trials

Design

Phase 1/2, international, multi-center, open-label, single arm studies to assess the safety and efficacy of CTX001 in patients with transfusion-dependent β-thalassemia (TDT) and SCD, respectively.

Target enrollment

- **TDT**
 - 45 patients aged 12-35 years with TDT, including β^0/β^0 genotypes, defined as a history of at least 100 mL/kg/year or 10 units/year of pRBC transfusions in the previous 2 years.
- **SCD**
 - 45 patients aged 12-35 years with severe SCD and a history of ≥2 vaso-occlusive crises/year over the previous two years.

Primary endpoint

- **TDT**
 - Proportion of patients achieving sustained transfusion reduction of 50% for at least 6 months starting 3 months after CTX001 infusion.
- **SCD**
 - Proportion of patients with HbF ≥ 20%, sustained for at least 3 months starting 6 months after CTX001 infusion.

>45 patients with TDT and SCD dosed across both trials as of July 29, 2021.
TDT: Patient Baseline and Treatment Characteristics

Patients with ≥3-month follow-up (n=15)

<table>
<thead>
<tr>
<th>Patient baseline</th>
<th>n</th>
<th>Treatment characteristics</th>
<th>Median (range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotype</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β⁰ / β⁰</td>
<td>2</td>
<td>Drug product cell dose</td>
<td>6.5 (3.5-16.6)</td>
</tr>
<tr>
<td>β⁰ / IVS-I-110¹</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IVS-I-110 / IVS-I-110¹</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β⁰ / βE</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β⁰ / β⁺</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β⁺ / β⁺</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female/Male</td>
<td>9/6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age at consent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Years</td>
<td>23</td>
<td>Age at consent</td>
<td>23 (18-32)</td>
</tr>
<tr>
<td>Pre-study pRBC transfusions²</td>
<td></td>
<td></td>
<td>34 (20.5-61)</td>
</tr>
<tr>
<td>Units/year</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| **Neutrophil engraftment³** | Median (range) |
| Study day⁴ | 29 (19-39) |

| **Platelet engraftment⁵** | Median (range) |
| Study day⁴ | 40 (29-56) |

| **Duration of follow-up** | Median (range) |
| Months | 8.7 (4.0-26.2) |

Data as of March 30, 2021

(1) IVS-I-110 phenotype is severe and similar to β⁰;
(2) Annualized number during the 2 years before consenting to study participation;
(3) Defined as the first day of 3 measurements of absolute neutrophil count ≥500 cells/µL on 3 consecutive days;
(4) Study day 1 is the day of CTX001 infusion;
(5) Defined as the first day of 3 consecutive measurements of platelet count ≥20,000/µL on 3 different days after CTX001 infusion, without a platelet transfusion in the past 7 days
TDT: Summary of Adverse Events

Patients with ≥3-month follow-up (n=15)

Safety profile generally consistent with myeloablation and autologous stem cell transplant

<table>
<thead>
<tr>
<th>Relationship</th>
<th>Patients with non-serious AEs, n</th>
<th>Patients with SAEs, n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Related to plerixafor and/or G-CSF</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Related to busulfan only</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>Related to CTX001 only</td>
<td>1(^2)</td>
<td>1</td>
</tr>
<tr>
<td>Related to busulfan and CTX001</td>
<td>3(^3)</td>
<td>1</td>
</tr>
<tr>
<td>Not related to any study drug</td>
<td>15</td>
<td>9</td>
</tr>
</tbody>
</table>

- 3 patients experienced SAEs assessed as related or possibly related to busulfan only: venoocclusive liver disease (2 patients), febrile neutropenia (1 patient), colitis (1 patient), and pneumonia (1 patient); all have resolved
- 1 patient had 4 SAEs assessed by the investigator as related or possibly related to CTX001: headache, haemophagocytic lymphohistiocytosis (HLH), acute respiratory distress syndrome, and idiopathic pneumonia syndrome (latter also related to busulfan); all occurred in the context of HLH and have resolved
- In addition to the above, one patient with <3 months of follow-up experienced an SAE of cerebellar hemorrhage, assessed by the investigator to be life-threatening, related to busulfan-induced thrombocytopenia, and not related to CTX001; the SAE has since resolved

Data as of March 30, 2021

(1) Includes related, possibly related, and missing relationship AEs;
(2) 1 patient experienced a non-serious AE of anaemia possibly related to CTX001 (resolved);
(3) 3 patients experienced non-serious AEs related or possibly related to busulfan and CTX001: petechiae, pyrexia, epistaxis, lymphocyte count decreased, neutrophil count decreased, WBC count decreased, and platelet count decreased (all resolved)
TDT: Clinically Meaningful HbF and Total Hb Are Achieved Early and Maintained

Hemoglobin fractionation, Hb (g/dL)

<table>
<thead>
<tr>
<th>CTX001 infusion</th>
<th>Total Hb, Mean (range), g/dL</th>
<th>HbF, Mean (range), g/dL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>10.1 (7.2 - 13.7)</td>
<td>0.5 (0.0 - 1.9)</td>
</tr>
<tr>
<td>1</td>
<td>8.7 (4.6 - 13.2)</td>
<td>0.5 (0.1 - 1.8)</td>
</tr>
<tr>
<td>2</td>
<td>11.0 (6.6 - 16.2)</td>
<td>4.7 (1.9 - 9.9)</td>
</tr>
<tr>
<td>3</td>
<td>11.4 (8.5 - 17.6)</td>
<td>7.5 (4.0 - 10.4)</td>
</tr>
<tr>
<td>4</td>
<td>12.2 (9.7 - 17.2)</td>
<td>10.3 (6.1 - 13.4)</td>
</tr>
<tr>
<td>5</td>
<td>12.4 (10.0 - 16.9)</td>
<td>10.8 (7.4 - 13.2)</td>
</tr>
<tr>
<td>6</td>
<td>11.6 (8.9 - 13.7)</td>
<td>10.3 (6.9 - 13.0)</td>
</tr>
<tr>
<td>9</td>
<td>12.0 (9.9 - 13.5)</td>
<td>11.0 (9.1 - 12.9)</td>
</tr>
<tr>
<td>12</td>
<td>12.1 (11.1 - 12.9)</td>
<td>11.5 (9.1 - 12.6)</td>
</tr>
<tr>
<td>15</td>
<td>13.2 (12.1 - 14.2)</td>
<td>12.6 (11.7 - 13.5)</td>
</tr>
<tr>
<td>18</td>
<td>14.1 (13.3 - 14.1)</td>
<td>13.1 (12.5 - 14.1)</td>
</tr>
<tr>
<td>21</td>
<td>13.3 (12.5 - 14.1)</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>14.7 (13.3 - 14.7)</td>
<td></td>
</tr>
</tbody>
</table>

| Months after CTX001 infusion | n = 15 | 15 | 14 | 14 | 14 | 13 | 11 | 6 | 5 | 2 | 1 | 1 | 1 |

Data as of March 30, 2021

© 2021 CRISPR Therapeutics
IVS-1-110 phenotype is severe and similar to β^0

Data as of March 30, 2021

(1) IVS-1-110 phenotype is severe and similar to β^0
SCD: Patient Baseline and Treatment Characteristics

Patients with ≥3-month follow-up (n=7)

<table>
<thead>
<tr>
<th>Patient baseline</th>
<th>n</th>
<th>Treatment characteristics</th>
<th>Median (range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotype</td>
<td>β⁺ / β⁺</td>
<td>Drug product cell dose</td>
<td>3.3 (3.1-3.9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CD34+ cells x 10⁶/kg</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td>3/4</td>
<td>Neutrophil engraftment²</td>
<td>25 (17-33)</td>
</tr>
<tr>
<td>Female/Male</td>
<td></td>
<td>Study day³</td>
<td></td>
</tr>
<tr>
<td>Age at consent</td>
<td>22 (19-34)</td>
<td>Platelet engraftment⁴</td>
<td>33 (30-53)</td>
</tr>
<tr>
<td>Years</td>
<td></td>
<td>Study day³</td>
<td></td>
</tr>
<tr>
<td>Pre-study VOCs</td>
<td>5.5 (2.5-9.5)</td>
<td>Duration of follow-up Months</td>
<td>7.6 (4.9-22.4)</td>
</tr>
<tr>
<td>VOCs/year¹</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data as of March 15, 2021

(1) Annualized rate during the 2 years before consenting to study participation;
(2) Defined as the first day of 3 measurements of absolute neutrophil count ≥500 cells/µL on 3 consecutive days;
(3) Study day 1 is the day of CTX001 infusion;
(4) Defined as the first day of 3 consecutive measurements of platelet count ≥50,000/µL on 3 different days after CTX001 infusion, without a platelet transfusion in the past 7 days
SCD: Summary of Adverse Events

Patients with ≥3-month follow-up (n=7)

Safety profile generally consistent with myeloablation and autologous stem cell transplant

<table>
<thead>
<tr>
<th>Relationship</th>
<th>Patients with non-serious AEs, n</th>
<th>Patients with SAEs, n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Related to plerixafor only</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Related to busulfan only</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Related to CTX001 only</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Related to busulfan and CTX001</td>
<td>3<sup>2</sup></td>
<td>0</td>
</tr>
<tr>
<td>Not related to any study drug</td>
<td>7</td>
<td>6</td>
</tr>
</tbody>
</table>

Data as of March 15, 2021

1. Includes related, possibly related, and missing relationship AEs;
2. 3 patients experienced non-serious AEs related or possibly related to busulfan and CTX001: dermatitis, lymphopenia, and CD4 lymphocytes decreased

- Post-CTX001 infusion, 1 patient experienced an SAE related to busulfan of sepsis, which resolved
- No SAEs related to CTX001 were reported
SCD: Clinically Meaningful HbF and Total Hb Are Achieved Early and Maintained

Hemoglobin fractionation, Hb (g/dL)

<table>
<thead>
<tr>
<th>months after CTX001 infusion</th>
<th>HbF</th>
<th>HbS</th>
<th>HbA</th>
<th>HbA2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>4.0%</td>
<td>0.0%</td>
<td>57.7%</td>
<td>38.3%</td>
</tr>
<tr>
<td>1</td>
<td>11.2</td>
<td>9.5</td>
<td>5.7 - 9.7</td>
<td>4.0%</td>
</tr>
<tr>
<td>2</td>
<td>12.1</td>
<td>11.2</td>
<td>8.9 - 13.7</td>
<td>37.4%</td>
</tr>
<tr>
<td>3</td>
<td>12.5</td>
<td>13.2</td>
<td>10.0 - 15.4</td>
<td>12.1</td>
</tr>
<tr>
<td>4</td>
<td>11.3</td>
<td>13.5</td>
<td>7.7 - 9.7</td>
<td>9.5</td>
</tr>
</tbody>
</table>

Data as of March 15, 2021

© 2021 CRISPR Therapeutics
SCD: Duration VOC-Free After CTX001

Pre-study VOC burden
Average number per year over the previous 2 years

<table>
<thead>
<tr>
<th>Patient</th>
<th>Pre-study VOC</th>
<th>Total Hb at last visit (g/dL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.0</td>
<td>12.0</td>
</tr>
<tr>
<td>2</td>
<td>7.5</td>
<td>11.0</td>
</tr>
<tr>
<td>3</td>
<td>4.0</td>
<td>13.7</td>
</tr>
<tr>
<td>4</td>
<td>2.5</td>
<td>15.9</td>
</tr>
<tr>
<td>5</td>
<td>5.5</td>
<td>15.2</td>
</tr>
<tr>
<td>6</td>
<td>9.5</td>
<td>15.7</td>
</tr>
<tr>
<td>7</td>
<td>4.0</td>
<td>12.5</td>
</tr>
</tbody>
</table>

Improvements in markers of hemolysis (serum lactate dehydrogenase and haptoglobin) observed; haptoglobin detectable by Month 6 in all 4 patients with Month 6 values

Data as of March 15, 2021
Pancellular HbF Expression and Durable Editing

Pancellular expression of HbF maintained
Mean % peripheral F-cells (range), % circulating RBCs expressing HbF

Data as of March 30, 2021 for TDT and March 15, 2021 for SCD
(1) Bone marrow editing assessments performed starting at 6 months, 12 months, and 24 months of follow-up
Allogeneic CAR-T Therapy Has Transformative Potential

Before Patient Diagnosis

- **Autologous: patient derived**

After Patient Diagnosis

- **Off-the-shelf**: Immediate treatment without risk of manufacturing failure, saving patients valuable time in which their disease could progress
- **Flexible dosing** (e.g., re-dosing)
- **A more consistent product**
- **Scalable manufacturing and simpler logistics**
- **Broader accessibility**

WEEK 1
- Apheresis

WEEK 2
- Manufacture

WEEK 3
- Single Treatment

T Cells
- Manufacture
- 100+ Doses

Healthy Donor

Patient

© 2021 CRISPR Therapeutics
 Multiplex CRISPR gene editing in one step designed to:

- **Improve persistence in the allo setting** via β2M knock-out to eliminate MHC I expression
- **Avoid need** for more toxic lymphodepletion regimens
- **Prevent GvHD** via TCR disruption
- **Improve consistency and safety** by precise insertion of CAR construct into TRAC locus without using lentivirus or retrovirus

CTX120™ and CTX130™ utilize the same CRISPR-edited allogeneic T cell design, but with different CAR targets, as well as additional editing in the case of CTX130
Key eligibility criteria

- Age ≥18 years
- Relapsed/refractory non-Hodgkin lymphoma, as evidenced by 2+ lines of prior therapy
- ECOG performance status 0 or 1

Primary endpoints

- Incidence of adverse events, defined as DLTs
- ORR

Key secondary endpoints

- CR rate, DoR, and OS

CARBON: Single-arm study evaluating the safety and efficacy of CTX110

Allogeneic CAR-T enables simplified trial design:
- Short screening timeframe
- No apheresis
- No bridging chemotherapy
- On-site availability of CAR-T cell product

Median time from enrollment to start of LD: 2 days

CTX110 infusion

Option for 2nd CTX110 infusion with LD following disease progression

Cyclophosphamide (500 mg/m²) + Fludarabine (30 mg/m²) for 3 days

NCT04035434
CARBON: Patient Flow

As of the data cutoff date:

- **Enrolled:** 30 patients
- **Treated:** 29 patients
- **≥28 days of follow-up (included in data cut):** 26 patients

Modified ITT (mITT) nearly identical to ITT: just one patient enrolled but not treated

- **At DL2 and above:**
 - mITT: 23 patients infused
 - ITT: 24 patients enrolled

Data as of August 26, 2021

(1) Includes patients in the process of being treated as of the cutoff date
CARBON: Baseline Patient Characteristics

CARBON only enrolled patients with aggressive LBCL

- **High burden of disease** with significant baseline tumor volume
- Both relapsed and refractory patients, including primary refractory patients that had no prior response to any anti-cancer therapy
- **History of rapidly progressive disease** – 31% of patients had progressed through 2+ lines of therapy and received CTX110 within 9 months of their first lymphoma treatment

Cell dose (CAR+ T cells)

<table>
<thead>
<tr>
<th></th>
<th>DL1 30x10^6 N=3</th>
<th>DL2 100x10^6 N=3</th>
<th>DL3 300x10^6 N=6</th>
<th>DL3.5 450x10^6 N=6</th>
<th>DL4 600x10^6 N=8</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median age, years (range)</td>
<td>52 (50-61)</td>
<td>64 (58-74)</td>
<td>69 (62-74)</td>
<td>67.5 (25-74)</td>
<td>65.5 (55-75)</td>
</tr>
<tr>
<td>Female</td>
<td>1 (33)</td>
<td>1 (33)</td>
<td>4 (67)</td>
<td>2 (33)</td>
<td>2 (25)</td>
</tr>
<tr>
<td>Lymphoma subtypes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large B-cell lymphoma (LBCL)</td>
<td>3 (100)</td>
<td>3 (100)</td>
<td>6 (100)</td>
<td>6 (100)</td>
<td>8 (100)</td>
</tr>
<tr>
<td>Current disease stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage IV</td>
<td>2 (67)</td>
<td>2 (67)</td>
<td>2 (33)</td>
<td>5 (83)</td>
<td>4 (50)</td>
</tr>
<tr>
<td>Prior treatments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median number (range)</td>
<td>2 (2-8)</td>
<td>3 (2-3)</td>
<td>2 (2-4)</td>
<td>2.5 (2-10)</td>
<td>3 (2-10)</td>
</tr>
<tr>
<td>Hematopoietic stem cell transplant</td>
<td>0</td>
<td>0</td>
<td>3 (50)</td>
<td>4 (67)</td>
<td>2 (25)</td>
</tr>
<tr>
<td>Refractory to last therapy</td>
<td>3 (100)</td>
<td>3 (100)</td>
<td>2 (33)</td>
<td>1 (17)</td>
<td>5 (63)</td>
</tr>
</tbody>
</table>

(1) Including DLBCL NOS, high grade lymphoma (e.g., triple hit), transformed follicular lymphoma (tFL); (2) Per Lugano 2014

Data as of August 26, 2021
Dose-Dependent Responses with CTX110

D28 response following first CTX110 dose per 2014 Lugano criteria

| Cell dose (CAR+ T cells) | DL1 30x10^6
N=3 | DL2 100x10^6
N=3 | DL3 300x10^6
N=6 | DL3.5 450x10^6
N=6 | DL4 600x10^6
N=8 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall response rate (ORR), N (%)</td>
<td>0 (0%)</td>
<td>1 (33%)</td>
<td>3 (50%)</td>
<td>4 (67%)</td>
<td>6 (75%)</td>
</tr>
<tr>
<td>Complete response (CR) rate, N (%)</td>
<td>0 (0%)</td>
<td>1 (33%)</td>
<td>2 (33%)</td>
<td>3 (50%)</td>
<td>3 (38%)</td>
</tr>
</tbody>
</table>

DL2+ mITT
N=23 | DL2+ ITT
N=24

| | DL2+ mITT
N=23 | DL2+ ITT
N=24 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall response rate (ORR), N (%)</td>
<td>14 (61%)</td>
<td>14 (58%)</td>
</tr>
<tr>
<td>Complete response (CR) rate, N (%)</td>
<td>9 (39%)</td>
<td>9 (38%)</td>
</tr>
</tbody>
</table>

Durable Responses Observed with CTX110

Durable responses have been observed with CTX110, with all patients in complete response at 6 months remaining clinically well without receiving any systemic anticancer therapy other than CTX110.

1. Patient had a localized tumor recurrence that was excised and is clinically well having received no additional anticancer therapy.
2. Unaudited data as of Oct. 7 after the data cut.

Imaging per protocol occurs at M1, M3, and M6; CR: complete response; PR: partial response; SD: stable disease; PD: progressive disease.

(1) Death due to disease progression
(2) Other death

Dose level of re-dose indicated if different from initial dose level.

Data as of August 26, 2021.
CTX110 Was Well Tolerated Across All Dose Levels

Adverse events of interest N (%)

<table>
<thead>
<tr>
<th></th>
<th>DL1 (N=3)</th>
<th>DL2 (N=3)</th>
<th>DL3 (N=6)</th>
<th>DL3.5 (N=6)</th>
<th>DL4 (N=8)</th>
<th>DL2+ (N=23)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gr 1-2</td>
<td>Gr 3+</td>
<td>Gr 1-2</td>
<td>Gr 3+</td>
<td>Gr 1-2</td>
<td>Gr 3+</td>
</tr>
<tr>
<td>CRS<sup>1</sup></td>
<td>1 (33)</td>
<td>-</td>
<td>2 (67)</td>
<td>-</td>
<td>2 (33)</td>
<td>-</td>
</tr>
<tr>
<td>ICANS<sup>2</sup></td>
<td>-</td>
<td>-</td>
<td>1 (33)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GvHD</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Infusion reactions</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Infections<sup>3</sup></td>
<td>-</td>
<td>1 (33)</td>
<td>-</td>
<td>-</td>
<td>1 (17)</td>
<td>1 (17)</td>
</tr>
</tbody>
</table>

- **No CRS and only one case of ICANS above Grade 2**⁴
- **No GvHD or infusion reactions**
- **Low rate of infections, with only 2 Grade 3+ events: HHV-6⁴ and pseudomonal sepsis that resolved in 4 days**
- **Includes events following re-dosing**

One treatment-emergent death without disease progression: ICANS/HHV-6 encephalitis⁴

CRS and ICANS graded per ASTCT criteria; other adverse events graded per CTCAE; (1) Cytokine Release Syndrome; (2) Immune Effector Cell-associated Neurotoxicity Syndrome; (3) All infections (bacterial, fungal, and viral) included; (4) As disclosed in October 2020

Data as of August 26, 2021
Strong Rationale for Consolidation Dose of CTX110

CTX110 shows a dose response, with better responses achieved with higher “effector:target” ratios

Consolidation has potential to create 2nd round of antitumor activity with favorable “E:T” ratio to increase deep and durable responses

(1) CAR+ T cells (millions) divided by baseline sum of perpendicular diameters (mm²)

Data as of August 26, 2021
Conclusions and Next Steps for CTX110

CTX110 is a potentially best-in-class allogeneic cell therapy in r/r LBCL with a profile that can compete with approved autologous CAR-T therapies

- **Initial response rates in line** with approved autologous CAR-T therapies
- **Ability to achieve** long-lasting complete remissions
- **Positively differentiated safety profile**
- **Potential to improve profile further with consolidation dosing**
- **Expand CARBON into a potentially registrational trial** in Q1 2022
- **Broaden into outpatient and community settings**
- **Further scale manufacturing in our state-of-the-art facility**
- **Continue to innovate** by advancing additional gene-edited allogeneic CAR-T programs to the clinic, including novel edits for increased potency
Our I/O Strategy and Allogeneic CAR-T Pipeline

<table>
<thead>
<tr>
<th>PROGRAM</th>
<th>RESEARCH</th>
<th>IND-ENABLING</th>
<th>CLINICAL</th>
<th>MARKETED</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Validate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTX110 (anti-CD19)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Enrolling</td>
</tr>
<tr>
<td>B-cell malignancies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTX120 (anti-BCMA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Enrolling</td>
</tr>
<tr>
<td>Multiple myeloma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTX130 (anti-CD70)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Enrolling</td>
</tr>
<tr>
<td>T- and B-cell lymphomas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTX130 (anti-CD70)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Enrolling</td>
</tr>
<tr>
<td>Renal cell carcinoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unlock</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-CD33 allogeneic CAR-T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Incorporating additional editing, novel targeting, etc.</td>
</tr>
<tr>
<td>Anti-PTK7 allogeneic CAR-T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional undisclosed programs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CRISPR gene editing facilitates consistent, multiplex editing to:

- Produce allogeneic cell therapies
- Enhance immune cell performance
- Speed the discovery and generation of novel therapeutic candidates

Multiplexed, single-shot 6x knock-out plus CAR insertion performed at high efficiency

6x-edited CAR-T cells show no viability decrease, no cytokine-independent growth and robust target-specific cytotoxicity
CRISPR Enables Regenerative Medicine 2.0

CRISPR/Cas9 Technology Opens Broader Applications for Regenerative Medicine

Exemplified by our collaboration with ViaCyte

- Aim to develop beta-cell replacement product to treat diabetes that does not require immunosuppression
- Applies immune-evasive gene-editing expertise from our allo CAR-T programs to stem cells
- Plan to initiate trials in 2021

CRISPR/Cas9

- Allow immune evasion
- Improve cell function
- Direct cell fate

Therapeutic Targets e.g., diabetes

Stem Cell Technology

© 2021 CRISPR Therapeutics
Unlocking *In Vivo* Applications of CRISPR/Cas9

AAV Vectors for Neuromuscular Indications

- **Adeno-associated virus (AAV)** to deliver Cas9 and gRNA to muscle, the nervous system and other tissues
- Collaboration with StrideBio to improve tissue specificity and reduce immunogenicity
- Programs include DMD and DM1 in collaboration with Vertex, as well as other early research programs

LNPs for Liver Indications

- **Lipid nanoparticles (LNPs)** containing mRNA encoding Cas9 and gRNA for delivery to the liver
- mRNA technology from CureVac
- Programs include GSD Ia and other early research programs

Enabling collaborations

© 2021 CRISPR Therapeutics
Optimizing the CRISPR/Cas9 Platform

- **Nuclease Engineering**: Enhance CRISPR/Cas9 system through protein engineering
- **Guide RNA Optimization**: Identify optimal guide RNA formats and sequences for therapeutic editing
- **Advanced Editing**: Improve efficiency of gene correction and multiplexing
- **Synthetic Biology**: Engineer improved cellular therapeutics

PLATFORM ENHANCEMENT
Strong U.S. and Global Foundational IP Position

United States

Charpentier / UC Berkeley / U. Vienna granted patents of broad scope; multiple applications progressing

- 40 Patents of broad scope granted, including the patent involved in the 1st interference
- Additional patent applications moving forward in parallel with both broad and narrow claims, including 4 patent applications of broad scope allowed
- Interference with Broad Institute in priority phase to determine who was first to invent CRISPR/Cas9 gene editing in eukaryotic cells; separate interference declared with Toolgen on same subject matter

Europe and Global

Charpentier / UC Berkeley / U. Vienna granted foundational patents, including use in eukaryotes

- 3 Patents of broad scope granted in the EU
- 31 Patents of broad scope granted in the UK, Germany, Japan, China, Singapore, Hong Kong, Ukraine, Israel, Australia, New Zealand, Mexico, South Africa and elsewhere
- ~80 Jurisdictions worldwide in which applications with both broad and narrow claims are advancing

As of Q2 2021
Building a Great Company

EXPERIENCED
Management Team

END-TO-END CAPABILITIES
With >400 Employees

COLLABORATIVE & ENTREPRENEURIAL Culture

CRISPR Therapeutics | www.crisprtx.com